Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix.
نویسندگان
چکیده
By binding growth factors (GFs), the ECM tightly regulates their activity. We recently reported that the heparin-binding domain II of fibronectin acts as a promiscuous high-affinity GF-binding domain. Here we hypothesized that fibrin, the provisional ECM during tissue repair, also could be highly promiscuous in its GF-binding capacity. Using multiple affinity-based assays, we found that fibrin(ogen) and its heparin-binding domain bind several GFs from the PDGF/VEGF and FGF families and some GFs from the TGF-β and neurotrophin families. Overall, we identified 15 unique binding interactions. The GF binding ability of fibrinogen caused prolonged retention of many of the identified GFs within fibrin. Thus, based on the promiscuous and high-affinity interactions in fibrin, GF binding may be one of fibrin's main physiological functions, and these interactions may potentially play an important and ubiquitous role during tissue repair. To prove this role in a gain-of-function model, we incorporated the heparin-binding domain of fibrin into a synthetic fibrin-mimetic matrix. In vivo, the multifunctional synthetic matrix could fully mimic the effect of fibrin in a diabetic mouse model of impaired wound healing, demonstrating the benefits of generating a hybrid biomaterial consisting of a synthetic polymeric scaffold and recombinant bioactive ECM domains. The reproduction of GF-ECM interactions with a fibrin-mimetic matrix could be clinically useful, and has the significant benefit of a more straightforward regulatory path associated with chemical synthesis rather than human sourcing.
منابع مشابه
Thrombin cleavage enhances exposure of a heparin binding domain in the N-terminus of the fibrin beta chain.
Thrombin (IIa)-cleavage of fibrinogen (FBG) to form polymerized fibrin promotes endothelial cell spreading, proliferation, and von Willebrand factor release, requiring the exposure of the beta 15-42 domain. Studies reported here indicate that IIa-cleavage of fibrinopeptide B enhances exposure of a heparin binding domain at the beta 15-42 neo-N-terminus of fibrin. Crossed immunoelectrophoresis s...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Interleukin-1 but not IL-1 binds to fibrinogen and fibrin and has enhanced activity in the bound form
Fibrin is formed at sites of injury or inflammation and provides the temporary matrix to support vascular cell responses that are also mediated by cytokines including interleukin-1 (IL-1). We have shown previously that fibroblast growth factor 2 (FGF-2) binds with high affinity to fibrin(ogen). Because IL-1 has a structure similar to FGF-2, we have investigated the possible binding of IL-1 to f...
متن کاملBatroxobin binds fibrin with higher affinity and promotes clot expansion to a greater extent than thrombin.
Batroxobin is a thrombin-like serine protease from the venom of Bothrops atrox moojeni that clots fibrinogen. In contrast to thrombin, which releases fibrinopeptide A and B from the NH2-terminal domains of the Aα- and Bβ-chains of fibrinogen, respectively, batroxobin only releases fibrinopeptide A. Because the mechanism responsible for these differences is unknown, we compared the interactions ...
متن کاملMechanism of batroxobin binding to fibrinogen and fibrin 1 BATROXOBIN BINDS FIBRIN WITH HIGHER AFFINITY AND PROMOTES CLOT EXPANSION TO A GREATER EXTENT THAN THROMBIN
Background: Snake venom protease batroxobin clots fibrinogen in a manner distinct from thrombin. Results: Batroxobin binds fibrin(ogen) with higher affinity than thrombin and promotes greater clot expansion. Conclusion: Batroxobin’s distinctive interaction with fibrin(ogen) may contribute to its unique pattern of fibrinopeptide release. Significance: Clinically, batroxobin is used as a defibrin...
متن کاملThrombin promotes diet-induced obesity through fibrin-driven inflammation.
Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 12 شماره
صفحات -
تاریخ انتشار 2013